biject |
Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)
Thm* A,B:Type, f:(A B). Bij(A; B; f) Prop
|
exp |
Def (base power) == if power= 0 1 else base (base power-1) fi (recursive)
Thm* n,k: . (n k)
Thm* n,k: . (n k) 
|
int_seg |
Def {i..j } == {k: | i k < j }
Thm* m,n: . {m..n } Type
|
length |
Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A*. ||l||
Thm* ||nil|| 
|
nat |
Def == {i: | 0 i }
Thm* Type
|
surject |
Def Surj(A; B; f) == b:B. a:A. f(a) = b
Thm* A,B:Type, f:(A B). Surj(A; B; f) Prop
|
inject |
Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B  a1 = a2
Thm* A,B:Type, f:(A B). Inj(A; B; f) Prop
|
eq_int |
Def i= j == if i=j true ; false fi
Thm* i,j: . i= j 
|
lelt |
Def i j < k == i j & j < k
|
le |
Def A B == B < A
Thm* i,j: . i j Prop
|
not |
Def A == A  False
Thm* A:Prop. ( A) Prop
|