Thms exponent Sections AutomataTheory Doc

biject Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)

Thm* A,B:Type, f:(AB). Bij(A; B; f) Prop

exp Def (basepower) == if power=0 1 else base(basepower-1) fi (recursive)

Thm* n,k:. (nk)

Thm* n,k:. (nk)

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)

Thm* A:Type, l:A*. ||l||

Thm* ||nil||

nat Def == {i:| 0i }

Thm* Type

one_one_corr Def A ~ B == f:(AB), g:(BA). InvFuns(A; B; f; g)

Thm* A,B:Type. (A ~ B) Prop

surject Def Surj(A; B; f) == b:B. a:A. f(a) = b

Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop

inject Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2

Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop

eq_int Def i=j == if i=j true ; false fi

Thm* i,j:. i=j

lelt Def i j < k == ij & j < k

le Def AB == B < A

Thm* i,j:. ij Prop

inv_funs Def InvFuns(A; B; f; g) == g o f = Id & f o g = Id

Thm* A,B:Type, f:(AB), g:(BA). InvFuns(A; B; f; g) Prop

not Def A == A False

Thm* A:Prop. (A) Prop

tidentity Def Id == Id

Thm* A:Type. Id AA

compose Def (f o g)(x) == f(g(x))

Thm* A,B,C:Type, f:(BC), g:(AB). f o g AC

identity Def Id(x) == x

Thm* A:Type. Id AA

About:
!abstractionapplyalluniversememberfunctionimplies
falsepropandequalless_thanintint_eq
btruebfalseboolexistssetnatural_numberrecursive_def_notice
list_indaddlistnilifthenelsemultiplysubtract