Thms exponent Sections AutomataTheory Doc

biject Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)

Thm* A,B:Type, f:(AB). Bij(A; B; f) Prop

inv_funs Def InvFuns(A; B; f; g) == g o f = Id & f o g = Id

Thm* A,B:Type, f:(AB), g:(BA). InvFuns(A; B; f; g) Prop

compose Def (f o g)(x) == f(g(x))

Thm* A,B,C:Type, f:(BC), g:(AB). f o g AC

exp Def (basepower) == if power=0 1 else base(basepower-1) fi (recursive)

Thm* n,k:. (nk)

Thm* n,k:. (nk)

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)

Thm* A:Type, l:A*. ||l||

Thm* ||nil||

listify Def listify(f; m; n) == if nm nil else f(m).listify(f; m+1; n) fi (recursive)

Thm* T:Type, m,n:, f:({m..n}T). listify(f; m; n) T*

nat Def == {i:| 0i }

Thm* Type

surject Def Surj(A; B; f) == b:B. a:A. f(a) = b

Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop

inject Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2

Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop

eq_int Def i=j == if i=j true ; false fi

Thm* i,j:. i=j

lelt Def i j < k == ij & j < k

tidentity Def Id == Id

Thm* A:Type. Id AA

le_int Def ij == j < i

Thm* i,j:. ij

le Def AB == B < A

Thm* i,j:. ij Prop

identity Def Id(x) == x

Thm* A:Type. Id AA

lt_int Def i < j == if i < j true ; false fi

Thm* i,j:. i < j

bnot Def b == if b false else true fi

Thm* b:. b

not Def A == A False

Thm* A:Prop. (A) Prop

About:
!abstractionimpliesfalseallpropmemberifthenelsebfalse
btrueboollessintapplyuniversefunctionless_than
andint_eqequalexistssetnatural_numberrecursive_def_noticenil
consaddlistlist_indmultiplysubtract