biject |
Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)
Thm* |
inv_funs |
Def InvFuns(A; B; f; g) == g o f = Id & f o g = Id
Thm* |
compose |
Def (f o g)(x) == f(g(x))
Thm* |
exp |
Def (base![]() ![]() ![]() ![]() ![]()
Thm*
Thm* |
int_seg |
Def {i..j![]() ![]() ![]() Thm* |
length |
Def ||as|| == Case of as; nil ![]() ![]()
Thm*
Thm* ||nil|| |
nat |
Def ![]() ![]() ![]() Thm* |
select |
Def l[i] == hd(nth_tl(i;l))
Thm* |
tlambda |
Def (![]() |
surject |
Def Surj(A; B; f) == ![]() ![]() Thm* |
inject |
Def Inj(A; B; f) == ![]() ![]() ![]() ![]() Thm* |
eq_int |
Def i=![]() ![]() ![]() ![]() Thm* |
lelt |
Def i ![]() ![]() |
tidentity |
Def Id == Id
Thm* |
le |
Def A![]() ![]() Thm* |
nth_tl |
Def nth_tl(n;as) == if n![]() ![]() ![]()
Thm* |
hd |
Def hd(l) == Case of l; nil ![]() ![]()
Thm* |
identity |
Def Id(x) == x
Thm* |
not |
Def ![]() ![]() ![]() Thm* |
tl |
Def tl(l) == Case of l; nil ![]() ![]()
Thm* |
le_int |
Def i![]() ![]() ![]() ![]() ![]() Thm* |
lt_int |
Def i < ![]() ![]() ![]() ![]() Thm* |
bnot |
Def ![]() ![]() ![]() ![]() ![]() Thm* |
About:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |