PrintForm Definitions exponent Sections AutomataTheory Doc

At: auto2 lemma 3 1

1. Alph: Type
2. R: Alph*Alph*Prop
3. n:
4. x:Alph*. R(x,x)
5. x,y:Alph*. R(x,y) R(y,x)
6. x,y,z:Alph*. R(x,y) & R(y,z) R(x,z)
7. x,y,z:Alph*. R(x,y) R((z @ x),z @ y)
8. w: nAlph*
9. l:Alph*. i:n. R(l,w(i))
10. a: Alph*
11. b: Alph*
12. c: Alph*
13. ||a||nn

a':Alph*. ||a'|| < ||a|| & R((a @ b),a' @ b) & R((a @ c),a' @ c)

By:
Inst Thm* Q:(ABProp). (x:A. y:B. Q(x,y)) (f:(AB). x:A. Q(x,f(x))) [Alph*;n;l,i. R(l,w(i))]
THEN
Analyze 14


Generated subgoal:

114. f: Alph*n
15. x:Alph*. R(x,w(f(x)))
a':Alph*. ||a'|| < ||a|| & R((a @ b),a' @ b) & R((a @ c),a' @ c)


About:
existslistandless_thanapplynatural_number
universefunctionpropallimpliesmultiply