PrintForm Definitions exponent Sections AutomataTheory Doc

At: fun enumer 1 2 1 2 2 1 2 1 1 2 1 1 1 1 2 1

1. n:
2. m:
3. 0 < m
4. f: ((m-1)n)(nm-1)
5. Bij((m-1)n; (nm-1); f)
6. n = 0
7. f1: n(nm-1)(nm)
8. b: (nm)
9. a: n(nm-1)
10. f1(a) = b (n(nm-1))

a:(mn). f1( < a(m-1),f(a) > ) = b

By:
Unfold `biject` 5
THEN
Analyze 5
THEN
Thin 5


Generated subgoal:

15. Surj((m-1)n; (nm-1); f)
6. n = 0
7. f1: n(nm-1)(nm)
8. b: (nm)
9. a: n(nm-1)
10. f1(a) = b (n(nm-1))
a:(mn). f1( < a(m-1),f(a) > ) = b


About:
existsfunctionnatural_numberequalapplypair
subtractintless_thanproductmultiply