directly_derive |
Def  (l,m)
== l0:(V+T)*, l1:(V+T List ), l2,m1:(V+T)*. l = (l0 @ l1 @ l2) & (l1  m1) & m = (l0 @ m1 @ l2)
Thm* V,T:Type, G:Grammar(V;T).  (V+T)* (V+T)* Prop
|
grammar |
Def Grammar(V;T) == ((V+T List ) (V+T)*)* V
Thm* V,T:Type{i}. Grammar(V;T) Type{i'}
|
append |
Def as @ bs == Case of as; nil bs ; a.as' a.(as' @ bs) (recursive)
Thm* T:Type, as,bs:T*. (as @ bs) T*
|
produce |
Def  (l1,l2) == i: ||G.prod||. < l1,l2 > = G.prod[i] (V+T List ) (V+T)*
Thm* V,T:Type, G:Grammar(V;T).  (V+T List ) (V+T)* Prop
|
list_p |
Def T List == {l:(T*)| ||l|| > 0 }
Thm* T:Type. (T List ) Type
|
g_prod |
Def g.prod == 1of(g)
Thm* V,T:Type, g:Grammar(V;T). g.prod ((V+T List ) (V+T)*)*
|
select |
Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A*, n: . 0 n  n < ||l||  l[n] A
|
length |
Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A*. ||l||
Thm* ||nil|| 
|
int_seg |
Def {i..j } == {k: | i k < j }
Thm* m,n: . {m..n } Type
|
gt |
Def i > j == j < i
Thm* i,j: . i > j Prop
|
pi1 |
Def 1of(t) == t.1
Thm* A:Type, B:(A Type), p:a:A B(a). 1of(p) A
|
nth_tl |
Def nth_tl(n;as) == if n 0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A*, i: . nth_tl(i;as) A*
|
hd |
Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A*. ||l|| 1  hd(l) A
|
lelt |
Def i j < k == i j & j < k
|
tl |
Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A*. tl(l) A*
|
le_int |
Def i j ==  j < i
Thm* i,j: . i j 
|
le |
Def A B == B < A
Thm* i,j: . i j Prop
|
lt_int |
Def i < j == if i < j true ; false fi
Thm* i,j: . i < j 
|
bnot |
Def  b == if b false else true fi
Thm* b: .  b 
|
not |
Def A == A  False
Thm* A:Prop. ( A) Prop
|