PrintForm Definitions grammar 1 Sections AutomataTheory Doc

At: derive trans 1

1. V: Type
2. T: Type
3. G: Grammar(V;T)
4. l: (V+T)*
5. m: (V+T)*
6. n: (V+T)*
7. a1: (V+T)* List
8. l = a1[0]
9. i:(||a1||-1). a1[i] a1[(i+1)]
10. a1[(||a1||-1)] = m
11. a: (V+T)* List
12. m = a[0]
13. i:(||a||-1). a[i] a[(i+1)]
14. a[(||a||-1)] = n

a:((V+T)* List). l = a[0] & (i:(||a||-1). a[i] a[(i+1)]) & a[(||a||-1)] = n

By:
Analyze 11
THEN
Analyze 7


Generated subgoal:

17. a1: ((V+T)*)*
8. ||a1|| > 0
9. l = a1[0]
10. i:(||a1||-1). a1[i] a1[(i+1)]
11. a1[(||a1||-1)] = m
12. a: ((V+T)*)*
13. ||a|| > 0
14. m = a[0]
15. i:(||a||-1). a[i] a[(i+1)]
16. a[(||a||-1)] = n
a:((V+T)* List). l = a[0] & (i:(||a||-1). a[i] a[(i+1)]) & a[(||a||-1)] = n


About:
existslistunionandequal
natural_numberallsubtractadduniverse