graph 1 1 Sections Graphs Doc

Def x:A. B(x) == x:AB(x)

is mentioned by

Thm* k1,k2:. f:((k1+k2)(k1+k2)). Inj(k1+k2; (k1+k2); f)[union_cardinality1]
Thm* L:(A+B) List, a:A. mapoutl(L) = [a] (L1,L2:(A+B) List. L = (L1 @ [inl(a)] @ L2) & mapoutl(L1) = nil & mapoutl(L2) = nil)[mapoutl_is_singleton]
Thm* L:(A+B) List, l1,l2:A List. mapoutl(L) = (l1 @ l2) (L1,L2:(A+B) List. L = (L1 @ L2) & mapoutl(L1) = l1 & mapoutl(L2) = l2)[mapoutl_is_append]
Thm* s:(A+B) List, x:A. (x mapoutl(s)) (y:A+B. (y s) & isl(y) & x = outl(y))[member_mapoutl]
Thm* A,B:T List. no_repeats(T;A) (x:T. (x A) (x B)) (x:T. (x A) & (x B)) ||A|| < ||B||[length_less]
Thm* s:T List. no_repeats(T;s) (f:(||s||T). Inj(||s||; T; f))[no_repeats_inj]
Thm* L:T List, x,y:T. x before y L (L1,L2,L3:T List. L = (L1 @ [x] @ L2 @ [y] @ L3))[l_before-iff]
Thm* a,c,b,d:T List. (a @ b) = (c @ d) (e:T List. a = (c @ e) & d = (e @ b) c = (a @ e) & b = (e @ d))[equal_appends]
Thm* L:T List, x,y:T. x before y L (A,B:T List. L = (A @ B) & (x A) & (y B))[l_before_decomp]
Thm* C,A,B:T List. C A @ B (A',B':T List. C = (A' @ B') & A' A & B' B)[sublist_append_iff]
Thm* (x,y:T. Dec(x = y)) (s:T List, z:T. (z s) (s1,s2:T List. s = (s1 @ [z / s2]) & (z s1)))[l_member_decomp2]
Thm* s:T List, z:T. (z s) (s1,s2:T List. s = (s1 @ [z / s2]))[l_member_decomp]
Thm* f:(AB). Bij(A; B; f) (g:(BA). Bij(B; A; g) & InvFuns(A; B; f; g))[inverse-biject]
Thm* x1,z,x2,x3:T List. ||z||||x1|| (x1 @ x2) = (z @ x3) (z':T List. x1 = (z @ z') & x3 = (z' @ x2))[equal_appends_case2]
Thm* x1,z,x2,x3:T List. ||x1||||z|| (x1 @ x2) = (z @ x3) (z':T List. z = (x1 @ z') & x2 = (z' @ x3))[equal_appends_case1]
Thm* L:T List, P:(T). (xL.P(x)) (i:||L||. P(L[i]))[assert_l_bexists]

In prior sections: core fun 1 int 2 mb nat mb list 1 num thy 1 mb list 2

Try larger context: Graphs

graph 1 1 Sections Graphs Doc