Definitions graph 1 1 Sections Graphs Doc

Some definitions of interest.
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
nat Def == {i:| 0i }
Thm* Type
le Def AB == B < A
Thm* i,j:. (ij) Prop
upto Def upto(i;j) == if i < j [i / upto(i+1;j)] else nil fi (recursive)
Thm* i,j:. upto(i;j) {i..j} List

About:
listconsnillist_ind
ifthenelseintnatural_numberaddless_thanset
recursive_def_noticeuniversememberpropall!abstraction

Definitions graph 1 1 Sections Graphs Doc