Definitions graph 1 1 Sections Graphs Doc

Some definitions of interest.
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
firstn Def firstn(n;as) == Case of as; nil nil ; a.as' if 0 < n [a / firstn(n-1;as')] else nil fi (recursive)
Thm* A:Type, as:A List, n:. firstn(n;as) A List
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A

About:
listconsnillist_ind
ifthenelseintnatural_numberaddsubtractless_than
recursive_def_noticeuniversememberimpliesall
!abstraction

Definitions graph 1 1 Sections Graphs Doc