Definitions graph 1 1 Sections Graphs Doc

Some definitions of interest.
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
list_accum Def list_accum(x,a.f(x;a);y;l) == Case of l; nil y ; b.l' list_accum(x,a.f(x;a);f(y;b);l') (recursive)
Thm* T,T':Type, l:T List, y:T', f:(T'TT'). list_accum(x,a.f(x,a);y;l) T'
top Def Top == Void given Void
Thm* Top Type

About:
listconslist_indvoidisect
functionrecursive_def_noticeuniversemembertopall!abstraction

Definitions graph 1 1 Sections Graphs Doc