Definitions
graph
1
1
Sections
Graphs
Doc
Some definitions of interest.
append
Def
as @ bs == Case of as; nil
bs ; a.as'
[a / (as' @ bs)] (recursive)
Thm*
T:Type, as,bs:T List. (as @ bs)
T List
list_accum
Def
list_accum(x,a.f(x;a);y;l) == Case of l; nil
y ; b.l'
list_accum(x,a.f(x;a);f(y;b);l') (recursive)
Thm*
T,T':Type, l:T List, y:T', f:(T'
T
T'). list_accum(x,a.f(x,a);y;l)
T'
top
Def
Top == Void given Void
Thm*
Top
Type
About:
Definitions
graph
1
1
Sections
Graphs
Doc