Definitions graph 1 1 Sections Graphs Doc

Some definitions of interest.
accumulate Def process u j where process s i == if P(i;s) then F(i;s) else G(i;s) where xs := N(i;s); s:= H(i;s); while not null xs { s := process s (hd xs); xs := tl xs; } == if P(j;u) F(j;u) else G(j;list_accum(s',i'.process s' i' where process s i == if P(i;s) then F(i;s) else G(i;s) where xs := N(i;s); s:= H(i;s); while not null xs { s := process s (hd xs); xs := tl xs; } ;H(j;u);N(j;u))) fi (recursive)
Thm* A,B:Type, P:(BA), F,G,H:(BAA), N:(BA(B List)), M:(A). (i:B, s:A. P(i,s) M(F(i,s))M(s)) (i:B, s:A. M(G(i,s))M(s)) (i:B, s:A. P(i,s) M(H(i,s)) < M(s)) (j:B, u:A. process u j where process s i == if P(i,s) then F(i,s) else G(i,s) where xs := N(i,s); s:= H(i,s); while not null xs { s := process s (hd xs); xs := tl xs; } {s:A| M(s)M(u) })
assert Def b == if b True else False fi
Thm* b:. b Prop
nat Def == {i:| 0i }
Thm* Type
sublist Def L1 L2 == f:(||L1||||L2||). increasing(f;||L1||) & (j:||L1||. L1[j] = L2[(f(j))] T)
Thm* T:Type, L1,L2:T List. L1 L2 Prop
le Def AB == B < A
Thm* i,j:. (ij) Prop
list_accum Def list_accum(x,a.f(x;a);y;l) == Case of l; nil y ; b.l' list_accum(x,a.f(x;a);f(y;b);l') (recursive)
Thm* T,T':Type, l:T List, y:T', f:(T'TT'). list_accum(x,a.f(x,a);y;l) T'
not Def A == A False
Thm* A:Prop. (A) Prop

About:
listlist_indboolifthenelseassertint
natural_numberless_thansetapplyfunctionrecursive_def_noticeuniverse
equalmemberpropimpliesandfalsetrueallexists
!abstraction

Definitions graph 1 1 Sections Graphs Doc