Definitions graph 1 1 Sections Graphs Doc

Some definitions of interest.
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
assert Def b == if b True else False fi
Thm* b:. b Prop
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
l_before Def x before y l == [x; y] l
Thm* T:Type, l:T List, x,y:T. x before y l Prop
mapfilter Def mapfilter(f;P;L) == map(f;filter(P;L))
Thm* T:Type, P:(T), T':Type, f:({x:T| P(x) }T'), L:T List. mapfilter(f;P;L) T' List

About:
listconsconsnillist_ind
boolifthenelseassertsetapplyfunctionrecursive_def_notice
universememberpropimpliesandfalsetrueall!abstraction

Definitions graph 1 1 Sections Graphs Doc