Definitions graph 1 1 Sections Graphs Doc

Some definitions of interest.
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop
no_repeats Def no_repeats(T;l) == i,j:. i < ||l|| j < ||l|| i = j l[i] = l[j] T
Thm* T:Type, l:T List. no_repeats(T;l) Prop
nat Def == {i:| 0i }
Thm* Type
not Def A == A False
Thm* A:Prop. (A) Prop
upto Def upto(i;j) == if i < j [i / upto(i+1;j)] else nil fi (recursive)
Thm* i,j:. upto(i;j) {i..j} List

About:
listconsnilifthenelseintnatural_numberadd
less_thansetrecursive_def_noticeuniverseequalmember
propimpliesandfalseallexists!abstraction

Definitions graph 1 1 Sections Graphs Doc