Definitions graph 1 1 Sections Graphs Doc

Some definitions of interest.
assert Def b == if b True else False fi
Thm* b:. b Prop
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
l_ball Def (xL.P(x)) == reduce(x,b. P(x)b;true;L)
Thm* T:Type, L:T List, P:(T). (xL.P(x))
le Def AB == B < A
Thm* i,j:. (ij) Prop
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
not Def A == A False
Thm* A:Prop. (A) Prop
rev_implies Def P Q == Q P
Thm* A,B:Prop. (A B) Prop
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A

About:
listnillist_indboolbtrueifthenelse
assertintnatural_numberaddless_thansetlambdafunctionrecursive_def_notice
universememberpropimpliesandfalsetrueall!abstraction

Definitions graph 1 1 Sections Graphs Doc