Definitions graph 1 1 Sections Graphs Doc

Some definitions of interest.
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
nat Def == {i:| 0i }
Thm* Type
not Def A == A False
Thm* A:Prop. (A) Prop
upto Def upto(i;j) == if i < j [i / upto(i+1;j)] else nil fi (recursive)
Thm* i,j:. upto(i;j) {i..j} List

About:
listconsnilifthenelseintnatural_numberaddset
recursive_def_noticeuniversememberpropimpliesfalseall!abstraction

Definitions graph 1 1 Sections Graphs Doc