(13steps total) PrintForm Definitions Lemmas graph 1 1 Sections Graphs Doc

At: no repeats append iff 1 1

1. T: Type
2. l1: T List
3. l2: T List
4. i,j:. i < ||l1||+||l2|| j < ||l1||+||l2|| i = j (l1 @ l2)[i] = (l1 @ l2)[j]
5. x: T
6. i1:
7. i1 < ||l1||
8. x = l1[i1]
9. i:
10. i < ||l2||
11. x = l2[i]
(l1 @ l2)[i1] = (l1 @ l2)[(i+||l1||)]

By:
RW (AddrC [2] (LemmaC Thm* as,bs:T List, i:||as||. (as @ bs)[i] = as[i])) 0
THEN
RWO Thm* as,bs:T List, i:{||as||..(||as||+||bs||)}. (as @ bs)[i] = bs[(i-||as||)] 0


Generated subgoal:

1 l1[i1] = l2[(i+||l1||-||l1||)]1 step

About:
listnatural_numberaddsubtractless_thanuniverseequalimpliesall

(13steps total) PrintForm Definitions Lemmas graph 1 1 Sections Graphs Doc