(13steps total)
PrintForm
Definitions
Lemmas
graph
1
1
Sections
Graphs
Doc
At:
no
repeats
append
iff
4
1.
T:
Type
2.
l1:
T List
3.
l2:
T List
4.
x:T.
((x
l1) & (x
l2))
5.
i,j:
. i < ||l1||
j < ||l1||
i = j
l1[i] = l1[j]
6.
i,j:
. i < ||l2||
j < ||l2||
i = j
l2[i] = l2[j]
7.
i:
8.
j:
9.
i < ||l1 @ l2||
10.
j < ||l1 @ l2||
11.
i = j
(l1 @ l2)[i] = (l1 @ l2)[j]
By:
((All (RWO
Thm*
as,bs:T List. ||as @ bs|| = ||as||+||bs||
)) THEN (Decide (i < ||l1||))) THENL [RW (AddrC [1;2] (LemmaC
Thm*
as,bs:T List, i:
||as||. (as @ bs)[i] = as[i])) 0 ;RW (AddrC [1;2] (LemmaC
Thm*
as,bs:T List, i:{||as||..(||as||+||bs||)
}. (as @ bs)[i] = bs[(i-||as||)])) 0]
THEN
(Decide (j < ||l1||)) THENL [RW (AddrC [1;3] (LemmaC
Thm*
as,bs:T List, i:
||as||. (as @ bs)[i] = as[i])) 0 ;RW (AddrC [1;3] (LemmaC
Thm*
as,bs:T List, i:{||as||..(||as||+||bs||)
}. (as @ bs)[i] = bs[(i-||as||)])) 0]
THEN
Try (BackThruSomeHyp THEN (Complete Auto))
Generated subgoals:
1
9.
i < ||l1||+||l2||
10.
j < ||l1||+||l2||
11.
i = j
12.
i < ||l1||
13.
j < ||l1||
l1[i] = l2[(j-||l1||)]
3
steps
 
2
9.
i < ||l1||+||l2||
10.
j < ||l1||+||l2||
11.
i = j
12.
i < ||l1||
13.
j < ||l1||
l2[(i-||l1||)] = l1[j]
3
steps
About:
(13steps total)
PrintForm
Definitions
Lemmas
graph
1
1
Sections
Graphs
Doc