(12steps total) PrintForm Definitions Lemmas graph 1 1 Sections Graphs Doc

At: rem add 1 1

1. x:
2. y:
3. n:
4. x = (x n)n+(x rem n)
5. |x rem n| < |n|
6. (x rem n) < 0 x < 0
7. (x rem n) > 0 x > 0
8. y = (y n)n+(y rem n)
9. |y rem n| < |n|
10. (y rem n) < 0 y < 0
11. (y rem n) > 0 y > 0
12. (x rem n)+(y rem n) = (((x rem n)+(y rem n)) n)n+(((x rem n)+(y rem n)) rem n)
13. |((x rem n)+(y rem n)) rem n| < |n|
14. (((x rem n)+(y rem n)) rem n) < 0 (x rem n)+(y rem n) < 0
15. (((x rem n)+(y rem n)) rem n) > 0 (x rem n)+(y rem n) > 0
16. x+y = 0
(x rem n)+(y rem n) = 0

By:
Subst (y = -x) 0
THEN
RWO Thm* x:, n:. ((-x) rem n) = -(x rem n) 0


Generated subgoals:

None

About:
intnatural_numberminusaddmultiplydivideremainderless_thanequalimpliesall

(12steps total) PrintForm Definitions Lemmas graph 1 1 Sections Graphs Doc