| Some definitions of interest. |
|
div_floor | Def a  n == if 0 a a n ;((-a) rem n)= 0 -((-a) n) else -((-a) n)+-1 fi |
| | Thm* a: , n: . (a  n)  |
|
divides | Def b | a == c: . a = b c |
| | Thm* a,b: . (a | b) Prop |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
modulus | Def a mod n == if 0 a a rem n ;((-a) rem n)= 0 0 else n-((-a) rem n) fi |
| | Thm* a: , n: . (a mod n)  |
|
nat_plus | Def  == {i: | 0 < i } |
| | Thm*  Type |