Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
div_floor Def a n == if 0aa n ;((-a) rem n)=0-((-a) n) else -((-a) n)+-1 fi
Thm* a:, n:. (a n)
divides Def b | a == c:. a = bc
Thm* a,b:. (a | b) Prop
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
modulus Def a mod n == if 0aa rem n ;((-a) rem n)=00 else n-((-a) rem n) fi
Thm* a:, n:. (a mod n)
nat_plus Def == {i:| 0 < i }
Thm* Type

About:
ifthenelseintnatural_numberminusaddsubtractmultiplydivideremainderless_than
setuniverseequalmemberpropimpliesandallexists
!abstraction

Definitions graph 1 2 Sections Graphs Doc