Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
div_floor Def a n == if 0aa n ;((-a) rem n)=0-((-a) n) else -((-a) n)+-1 fi
Thm* a:, n:. (a n)
int_nzero Def == {i:| i 0 }
Thm* Type
modulus Def a mod n == if 0aa rem n ;((-a) rem n)=00 else n-((-a) rem n) fi
Thm* a:, n:. (a mod n)
nat Def == {i:| 0i }
Thm* Type
nat_plus Def == {i:| 0 < i }
Thm* Type
prime Def prime(a) == a = 0 & (a ~ 1) & (b,c:. (a | (bc)) (a | b) (a | c))
Thm* a:. prime(a) Prop
not Def A == A False
Thm* A:Prop. (A) Prop

About:
ifthenelseintnatural_numberminusaddsubtractmultiplydivideremainderless_thanset
universeequalmemberpropimpliesandorfalseall!abstraction

Definitions graph 1 2 Sections Graphs Doc