| Some definitions of interest. |
|
div_floor | Def a  n == if 0 a a n ;((-a) rem n)= 0 -((-a) n) else -((-a) n)+-1 fi |
| | Thm* a: , n: . (a  n)  |
|
int_nzero | Def   == {i: | i 0 } |
| | Thm*   Type |
|
modulus | Def a mod n == if 0 a a rem n ;((-a) rem n)= 0 0 else n-((-a) rem n) fi |
| | Thm* a: , n: . (a mod n)  |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
nat_plus | Def  == {i: | 0 < i } |
| | Thm*  Type |
|
prime | Def prime(a) == a = 0 & (a ~ 1) & ( b,c: . (a | (b c))  (a | b) (a | c)) |
| | Thm* a: . prime(a) Prop |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |