Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
prime Def prime(a) == a = 0 & (a ~ 1) & (b,c:. (a | (bc)) (a | b) (a | c))
Thm* a:. prime(a) Prop
assoced Def a ~ b == (a | b) & (b | a)
Thm* a,b:. (a ~ b) Prop
div_floor Def a n == if 0aa n ;((-a) rem n)=0-((-a) n) else -((-a) n)+-1 fi
Thm* a:, n:. (a n)
divides Def b | a == c:. a = bc
Thm* a,b:. (a | b) Prop
int_nzero Def == {i:| i 0 }
Thm* Type
nat Def == {i:| 0i }
Thm* Type
le Def AB == B < A
Thm* i,j:. (ij) Prop
modulus Def a mod n == if 0aa rem n ;((-a) rem n)=00 else n-((-a) rem n) fi
Thm* a:, n:. (a mod n)
not Def A == A False
Thm* A:Prop. (A) Prop

About:
ifthenelseintnatural_numberminusaddsubtractmultiplydivide
remainderless_thansetuniverseequalmemberprop
impliesandorfalseallexists
!abstraction

Definitions graph 1 2 Sections Graphs Doc