Definitions
graph
1
2
Sections
Graphs
Doc
Some definitions of interest.
fappend
Def
f[n:=x](i) == if i=
n
x else f(i) fi
Thm*
n,m:
, f:(
n
m), x:
m. f[n:=x]
(n+1)
m
increasing
Def
increasing(f;k) ==
i:
(k-1). f(i) < f(i+1)
Thm*
k:
, f:(
k
). increasing(f;k)
Prop
int_seg
Def
{i..j
} == {k:
| i
k < j }
Thm*
m,n:
. {m..n
}
Type
nat_plus
Def
== {i:
| 0 < i }
Thm*
Type
About:
Definitions
graph
1
2
Sections
Graphs
Doc