Definitions
graph
1
2
Sections
Graphs
Doc
Some definitions of interest.
arrows
Def
r- > L^k ==
n:
. r
n
(
G:({s:(
n List)| ||s|| = k
& (
x,y:
||s||. x < y
s[x] < s[y]) }
||L||).
c:
||L||, f:(
L[c]
n). increasing(f;L[c]) & (
s:
L[c] List. ||s|| = k
(
x,y:
||s||. x < y
s[x] < s[y])
G(map(f;s)) = c))
Thm*
r:
, k:
, L:
List. r- > L^k
Prop
nat
Def
== {i:
| 0
i }
Thm*
Type
le
Def
A
B ==
B < A
Thm*
i,j:
. (i
j)
Prop
nat_plus
Def
== {i:
| 0 < i }
Thm*
Type
About:
Definitions
graph
1
2
Sections
Graphs
Doc