Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
arrows Def r- > L^k == n:. rn (G:({s:(n List)| ||s|| = k & (x,y:||s||. x < y s[x] < s[y]) }||L||). c:||L||, f:(L[c]n). increasing(f;L[c]) & (s:L[c] List. ||s|| = k (x,y:||s||. x < y s[x] < s[y]) G(map(f;s)) = c))
Thm* r:, k:, L: List. r- > L^k Prop
nat Def == {i:| 0i }
Thm* Type
le Def AB == B < A
Thm* i,j:. (ij) Prop
nat_plus Def == {i:| 0 < i }
Thm* Type

About:
listintnatural_numberless_thansetfunctionuniverseequal
memberpropimpliesandallexists!abstraction

Definitions graph 1 2 Sections Graphs Doc