Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
path Def path(the_graph;p) == 0 < ||p|| & (i:(||p||-1). p[i]-the_graph- > p[(i+1)])
Thm* For any graph p:V List. path(the_graph;p) Prop
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||

About:
productproductlistnillist_ind
intnatural_numberaddsubtractless_thanfunctionrecursive_def_notice
universemembertoppropandall!abstraction

Definitions graph 1 2 Sections Graphs Doc