Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
assert Def b == if b True else False fi
Thm* b:. b Prop
path Def path(the_graph;p) == 0 < ||p|| & (i:(||p||-1). p[i]-the_graph- > p[(i+1)])
Thm* For any graph p:V List. path(the_graph;p) Prop
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}
not Def A == A False
Thm* A:Prop. (A) Prop
null Def null(as) == Case of as; nil true ; a.as' false
Thm* T:Type, as:T List. null(as)
Thm* null(nil)

About:
productproductlistnillist_indbool
bfalsebtrueifthenelseassertnatural_numberaddsubtractless_thanfunction
universemembertoppropimpliesandfalsetrueall!abstraction

Definitions graph 1 2 Sections Graphs Doc