Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
edge Def x-the_graph- > y == e:Edges(the_graph). Incidence(the_graph)(e) = < x,y >
Thm* For any graph x,y:V. x-the_graph- > y Prop
ge Def ij == ji
Thm* i,j:. (ij) Prop
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List

About:
pairproductproductlistnillist_ind
intnatural_numberaddless_thansetapplyfunctionrecursive_def_notice
universeequalmembertoppropimpliesallexists!abstraction

Definitions graph 1 2 Sections Graphs Doc