Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
depthfirst-traversal Def depthfirst-traversal(the_graph;s) == i:Vertices(the_graph), s1,s2:traversal(the_graph). (j:Vertices(the_graph). i-the_graph- > *j non-trivial-loop(the_graph;j)) s = (s1 @ [inl(i)] @ s2) traversal(the_graph) (j:Vertices(the_graph). j = i i-the_graph- > *j (inl(j) s2))
df-traversal Def df-traversal(G;s) == (i:Vertices(G), s1,s2:traversal(G). s = (s1 @ [inr(i)] @ s2) traversal(G) (j:Vertices(G). (inr(j) s2) (inl(j) s2) j-G- > *i)) & (i:Vertices(G), s1,s2:traversal(G). (j:Vertices(G). i-G- > *j non-trivial-loop(G;j)) s = (s1 @ [inl(i)] @ s2) traversal(G) (j:Vertices(G). i-G- > *j (inr(j) s2)))
paren Def paren(T;s) == s = nil (T+T) List (t:T, s':(T+T) List. s = ([inl(t)] @ s' @ [inr(t)]) & paren(T;s')) (s',s'':(T+T) List. ||s'|| < ||s|| & ||s''|| < ||s|| & s = (s' @ s'') & paren(T;s') & paren(T;s'')) (recursive)
Thm* T:Type, s:(T+T) List. paren(T;s) Prop
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
non-trivial-loop Def non-trivial-loop(G;i) == j:Vertices(G). j = i & i-G- > *j & j-G- > *i
connect Def x-the_graph- > *y == p:Vertices(the_graph) List. path(the_graph;p) & p[0] = x & last(p) = y
Thm* For any graph x,y:V. x-the_graph- > *y Prop
decidable Def Dec(P) == P P
Thm* A:Prop. Dec(A) Prop
traversal Def traversal(G) == (Vertices(G)+Vertices(G)) List
Thm* For any graph Traversal Type
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop
no_repeats Def no_repeats(T;l) == i,j:. i < ||l|| j < ||l|| i = j l[i] = l[j] T
Thm* T:Type, l:T List. no_repeats(T;l) Prop
not Def A == A False
Thm* A:Prop. (A) Prop

About:
productproductlistconsconsnil
list_inddecidablenatural_numberless_than
unioninlinrfunctionrecursive_def_noticeuniverseequal
membertoppropimpliesandorfalseall
exists!abstraction

Definitions graph 1 2 Sections Graphs Doc