Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
list-connect Def L-G- > *x == (yL.y-G- > *x)
connect Def x-the_graph- > *y == p:Vertices(the_graph) List. path(the_graph;p) & p[0] = x & last(p) = y
Thm* For any graph x,y:V. x-the_graph- > *y Prop
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop

About:
productproductlistnatural_numberless_thanfunctionuniverseequal
membertoppropandallexists!abstraction

Definitions graph 1 2 Sections Graphs Doc