Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
graph-isomorphic Def G H == vmap:(Vertices(G)Vertices(H)), emap:(Edges(G)Edges(H)). Bij(Vertices(G); Vertices(H); vmap) & Bij(Edges(G); Edges(H); emap) & (vmap,vmap) o Incidence(G) = Incidence(H) o emap
biject Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)
Thm* A,B:Type, f:(AB). Bij(A; B; f) Prop
compose Def (f o g)(x) == f(g(x))
Thm* A,B,C:Type, f:(BC), g:(AB). f o g AC
compose2 Def (f1,f2) o g(x) == g(x)/x,y. < f1(x),f2(y) >
Thm* A,B,C,B',C':Type, g:(ABC), f1:(BB'), f2:(CC'). (f1,f2) o g AB'C'
gr_e Def Edges(t) == 1of(2of(t))
Thm* t:Graph. Edges(t) Type
gr_f Def Incidence(t) == 1of(2of(2of(t)))
Thm* t:Graph. Incidence(t) Edges(t)Vertices(t)Vertices(t)
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}
identity Def Id(x) == x
Thm* A:Type. Id AA

About:
pairspreadproductproductapplyfunctionuniverse
equalmembertoppropandallexists
!abstraction

Definitions graph 1 2 Sections Graphs Doc