| Some definitions of interest. |
|
graph-isomorphic | Def G H == vmap:(Vertices(G) Vertices(H)), emap:(Edges(G) Edges(H)). Bij(Vertices(G); Vertices(H); vmap) & Bij(Edges(G); Edges(H); emap) & (vmap,vmap) o Incidence(G) = Incidence(H) o emap |
|
biject | Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f) |
| | Thm* A,B:Type, f:(A B). Bij(A; B; f) Prop |
|
compose | Def (f o g)(x) == f(g(x)) |
| | Thm* A,B,C:Type, f:(B C), g:(A B). f o g A C |
|
compose2 | Def (f1,f2) o g(x) == g(x)/x,y. < f1(x),f2(y) > |
| | Thm* A,B,C,B',C':Type, g:(A B C), f1:(B B'), f2:(C C'). (f1,f2) o g A B' C' |
|
gr_e | Def Edges(t) == 1of(2of(t)) |
| | Thm* t:Graph. Edges(t) Type |
|
gr_f | Def Incidence(t) == 1of(2of(2of(t))) |
| | Thm* t:Graph. Incidence(t) Edges(t) Vertices(t) Vertices(t) |
|
gr_v | Def Vertices(t) == 1of(t) |
| | Thm* t:Graph. Vertices(t) Type |
|
graph | Def Graph == v:Type e:Type (e v v) Top |
| | Thm* Graph Type{i'} |
|
identity | Def Id(x) == x |
| | Thm* A:Type. Id A A |