Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
equiv_rel Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & (Sym x,y:T. E(x;y)) & (Trans x,y:T. E(x;y))
Thm* T:Type, E:(TTProp). (EquivRel x,y:T. E(x,y)) Prop
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}
graph-isomorphic Def G H == vmap:(Vertices(G)Vertices(H)), emap:(Edges(G)Edges(H)). Bij(Vertices(G); Vertices(H); vmap) & Bij(Edges(G); Edges(H); emap) & (vmap,vmap) o Incidence(G) = Incidence(H) o emap
refl Def Refl(T;x,y.E(x;y)) == a:T. E(a;a)
Thm* T:Type, E:(TTProp). Refl(T;x,y.E(x,y)) Prop
sym Def Sym x,y:T. E(x;y) == a,b:T. E(a;b) E(b;a)
Thm* T:Type, E:(TTProp). (Sym x,y:T. E(x,y)) Prop
trans Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c)
Thm* T:Type, E:(TTProp). (Trans x,y:T. E(x,y)) Prop

About:
productproductfunctionuniverseequalmembertopprop
impliesandallexists!abstraction

Definitions graph 1 2 Sections Graphs Doc