| Some definitions of interest. |
|
equiv_rel | Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & (Sym x,y:T. E(x;y)) & (Trans x,y:T. E(x;y)) |
| | Thm* T:Type, E:(T T Prop). (EquivRel x,y:T. E(x,y)) Prop |
|
graph | Def Graph == v:Type e:Type (e v v) Top |
| | Thm* Graph Type{i'} |
|
graph-isomorphic | Def G H == vmap:(Vertices(G) Vertices(H)), emap:(Edges(G) Edges(H)). Bij(Vertices(G); Vertices(H); vmap) & Bij(Edges(G); Edges(H); emap) & (vmap,vmap) o Incidence(G) = Incidence(H) o emap |
|
refl | Def Refl(T;x,y.E(x;y)) == a:T. E(a;a) |
| | Thm* T:Type, E:(T T Prop). Refl(T;x,y.E(x,y)) Prop |
|
sym | Def Sym x,y:T. E(x;y) == a,b:T. E(a;b)  E(b;a) |
| | Thm* T:Type, E:(T T Prop). (Sym x,y:T. E(x,y)) Prop |
|
trans | Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b)  E(b;c)  E(a;c) |
| | Thm* T:Type, E:(T T Prop). (Trans x,y:T. E(x,y)) Prop |