| Some definitions of interest. |
|
graph-isomorphic | Def G H == vmap:(Vertices(G) Vertices(H)), emap:(Edges(G) Edges(H)). Bij(Vertices(G); Vertices(H); vmap) & Bij(Edges(G); Edges(H); emap) & (vmap,vmap) o Incidence(G) = Incidence(H) o emap |
|
biject | Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f) |
| | Thm* A,B:Type, f:(A B). Bij(A; B; f) Prop |
|
compose | Def (f o g)(x) == f(g(x)) |
| | Thm* A,B,C:Type, f:(B C), g:(A B). f o g A C |
|
compose2 | Def (f1,f2) o g(x) == g(x)/x,y. < f1(x),f2(y) > |
| | Thm* A,B,C,B',C':Type, g:(A B C), f1:(B B'), f2:(C C'). (f1,f2) o g A B' C' |
|
rel-graph | Def Graph(x,y:T. R(x;y)) == < vertices = T, edges = {p:(T T)| R(1of(p);2of(p)) }, incidence = Id > |
|
tidentity | Def Id == Id |
| | Thm* A:Type. Id A A |
|
identity | Def Id(x) == x |
| | Thm* A:Type. Id A A |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
pi1 | Def 1of(t) == t.1 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 1of(p) A |
|
pi2 | Def 2of(t) == t.2 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 2of(p) B(1of(p)) |