Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
graph-isomorphic Def G H == vmap:(Vertices(G)Vertices(H)), emap:(Edges(G)Edges(H)). Bij(Vertices(G); Vertices(H); vmap) & Bij(Edges(G); Edges(H); emap) & (vmap,vmap) o Incidence(G) = Incidence(H) o emap
biject Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)
Thm* A,B:Type, f:(AB). Bij(A; B; f) Prop
compose Def (f o g)(x) == f(g(x))
Thm* A,B,C:Type, f:(BC), g:(AB). f o g AC
compose2 Def (f1,f2) o g(x) == g(x)/x,y. < f1(x),f2(y) >
Thm* A,B,C,B',C':Type, g:(ABC), f1:(BB'), f2:(CC'). (f1,f2) o g AB'C'
decidable Def Dec(P) == P P
Thm* A:Prop. Dec(A) Prop
fun-graph Def Graph(a:A -- > f(a;b) | b:B) == < vertices = A, edges = AB, incidence = < a,b > . < a,f(a;b) > >
rel-graph Def Graph(x,y:T. R(x;y)) == < vertices = T, edges = {p:(TT)| R(1of(p);2of(p)) }, incidence = Id >
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
tidentity Def Id == Id
Thm* A:Type. Id AA

About:
pairspreadspreadspreadproductproductdecidableitsetapply
functionuniverseequalmemberpropandorallexists
!abstraction

Definitions graph 1 2 Sections Graphs Doc