| Some definitions of interest. |
|
divides-graph1 | Def DivGraph_1 == Graph(i,j: . i | j) |
|
divides | Def b | a == c: . a = b c |
| | Thm* a,b: . (a | b) Prop |
|
divides-graph2 | Def DivGraph_2 == Graph(i: -- > i n | n: ) |
|
fun-graph | Def Graph(a:A -- > f(a;b) | b:B) == < vertices = A, edges = A B, incidence = < a,b > . < a,f(a;b) > > |
|
graph | Def Graph == v:Type e:Type (e v v) Top |
| | Thm* Graph Type{i'} |
|
graph-isomorphic | Def G H == vmap:(Vertices(G) Vertices(H)), emap:(Edges(G) Edges(H)). Bij(Vertices(G); Vertices(H); vmap) & Bij(Edges(G); Edges(H); emap) & (vmap,vmap) o Incidence(G) = Incidence(H) o emap |
|
nat_plus | Def  == {i: | 0 < i } |
| | Thm*  Type |
|
rel-graph | Def Graph(x,y:T. R(x;y)) == < vertices = T, edges = {p:(T T)| R(1of(p);2of(p)) }, incidence = Id > |