Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
decidable Def Dec(P) == P P
Thm* A:Prop. Dec(A) Prop
fun-graph Def Graph(a:A -- > f(a;b) | b:B) == < vertices = A, edges = AB, incidence = < a,b > . < a,f(a;b) > >
graph-isomorphic Def G H == vmap:(Vertices(G)Vertices(H)), emap:(Edges(G)Edges(H)). Bij(Vertices(G); Vertices(H); vmap) & Bij(Edges(G); Edges(H); emap) & (vmap,vmap) o Incidence(G) = Incidence(H) o emap
int_nzero Def == {i:| i 0 }
Thm* Type
nat_plus Def == {i:| 0 < i }
Thm* Type
rel-graph Def Graph(x,y:T. R(x;y)) == < vertices = T, edges = {p:(TT)| R(1of(p);2of(p)) }, incidence = Id >

About:
pairproductdecidableitintnatural_numberless_thansetfunctionuniverse
equalmemberpropandorallexists!abstraction

Definitions graph 1 2 Sections Graphs Doc