| Some definitions of interest. |
|
decidable | Def Dec(P) == P P |
| | Thm* A:Prop. Dec(A) Prop |
|
fun-graph | Def Graph(a:A -- > f(a;b) | b:B) == < vertices = A, edges = A B, incidence = < a,b > . < a,f(a;b) > > |
|
graph-isomorphic | Def G H == vmap:(Vertices(G) Vertices(H)), emap:(Edges(G) Edges(H)). Bij(Vertices(G); Vertices(H); vmap) & Bij(Edges(G); Edges(H); emap) & (vmap,vmap) o Incidence(G) = Incidence(H) o emap |
|
int_nzero | Def   == {i: | i 0 } |
| | Thm*   Type |
|
nat_plus | Def  == {i: | 0 < i } |
| | Thm*  Type |
|
rel-graph | Def Graph(x,y:T. R(x;y)) == < vertices = T, edges = {p:(T T)| R(1of(p);2of(p)) }, incidence = Id > |