| Some definitions of interest. |
|
divides | Def b | a == c: . a = b c |
| | Thm* a,b: . (a | b) Prop |
|
graph-isomorphic | Def G H == vmap:(Vertices(G) Vertices(H)), emap:(Edges(G) Edges(H)). Bij(Vertices(G); Vertices(H); vmap) & Bij(Edges(G); Edges(H); emap) & (vmap,vmap) o Incidence(G) = Incidence(H) o emap |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
nat_plus | Def  == {i: | 0 < i } |
| | Thm*  Type |
|
rel-graph | Def Graph(x,y:T. R(x;y)) == < vertices = T, edges = {p:(T T)| R(1of(p);2of(p)) }, incidence = Id > |