Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
divides Def b | a == c:. a = bc
Thm* a,b:. (a | b) Prop
graph-isomorphic Def G H == vmap:(Vertices(G)Vertices(H)), emap:(Edges(G)Edges(H)). Bij(Vertices(G); Vertices(H); vmap) & Bij(Edges(G); Edges(H); emap) & (vmap,vmap) o Incidence(G) = Incidence(H) o emap
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
nat_plus Def == {i:| 0 < i }
Thm* Type
rel-graph Def Graph(x,y:T. R(x;y)) == < vertices = T, edges = {p:(TT)| R(1of(p);2of(p)) }, incidence = Id >

About:
productitintnatural_numbermultiplyless_thansetfunctionuniverseequal
memberpropimpliesandallexists!abstraction

Definitions graph 1 2 Sections Graphs Doc