Rank | Theorem | Name |
3 | Thm* G,H:Graph. G H  H G | [graph-isomorphic_inversion] |
cites |
2 | Thm* f:(A B). Bij(A; B; f)  ( g:(B A). Bij(B; A; g) & InvFuns(A; B; f; g)) | [inverse-biject] |
0 | Thm* g:(A B C). (Id,Id) o g = g | [comp2_id_l] |
0 | Thm* h:(A' A1 A2), g1:(A1 B), g2:(A2 C), f1:(B B'), f2:(C C'). (f1,f2) o (g1,g2) o h = (f1 o g1,f2 o g2) o h | [comp2_comp2_assoc] |
0 | Thm* f:(A B), g:(B C), h:(C D). h o (g o f) = (h o g) o f A D | [comp_assoc] |
1 | Thm* f:(A B). f o Id = f | [comp_id_r] |