(3steps total) PrintForm Definitions Lemmas graph 1 2 Sections Graphs Doc

At: graph-isomorphic inversion

G,H:Graph. G H H G

By:
Unfold `graph-isomorphic` 0
THEN
ExRepD
THEN
AllHyps (h. FwdThru Thm* f:(AB). Bij(A; B; f) (g:(BA). Bij(B; A; g) & InvFuns(A; B; f; g)) [h])
THEN
ExRepD
THEN
InstConcl [g;g1]


Generated subgoal:

11. G: Graph
2. H: Graph
3. vmap: Vertices(G)Vertices(H)
4. emap: Edges(G)Edges(H)
5. Bij(Vertices(G); Vertices(H); vmap)
6. Bij(Edges(G); Edges(H); emap)
7. (vmap,vmap) o Incidence(G) = Incidence(H) o emap
8. g1: Edges(H)Edges(G)
9. Bij(Edges(H); Edges(G); g1)
10. InvFuns(Edges(G); Edges(H); emap; g1)
11. g: Vertices(H)Vertices(G)
12. Bij(Vertices(H); Vertices(G); g)
13. InvFuns(Vertices(G); Vertices(H); vmap; g)
(g,g) o Incidence(H) = Incidence(G) o g1
2 steps

About:
productfunctionuniverseequalimpliesandallexists

(3steps total) PrintForm Definitions Lemmas graph 1 2 Sections Graphs Doc