(30steps total) PrintForm Definitions Lemmas graph 1 2 Sections Graphs Doc

At: Ramsey-base-case 1

1. L: List
2. n:
3. sum(L[i]-1 | i < ||L||)+1n
4. G: {s:(n List)| ||s|| = 1 & (x,y:||s||. x < y s[x] < s[y]) }||L||
c:||L||, f:(L[c]n). increasing(f;L[c]) & (s:L[c] List. ||s|| = 1 (x,y:||s||. x < y s[x] < s[y]) G(map(f;s)) = c)

By: Assert (c:||L||, f:(L[c]n). increasing(f;L[c]) & (s:L[c]. G([(f(s))]) = c))

Generated subgoals:

1 c:||L||, f:(L[c]n). increasing(f;L[c]) & (s:L[c]. G([(f(s))]) = c)21 steps
 
25. c:||L||, f:(L[c]n). increasing(f;L[c]) & (s:L[c]. G([(f(s))]) = c)
c:||L||, f:(L[c]n). increasing(f;L[c]) & (s:L[c] List. ||s|| = 1 (x,y:||s||. x < y s[x] < s[y]) G(map(f;s)) = c)
7 steps

About:
listconsnilintnatural_numberaddsubtractless_thanset
applyfunctionequalimpliesandallexists

(30steps total) PrintForm Definitions Lemmas graph 1 2 Sections Graphs Doc