(47steps total) PrintForm Definitions Lemmas graph 1 2 Sections Graphs Doc

At: paren order1 2

1. T: Type
s1,s2:(T+T) List. (i:T, s1@0,s2:(T+T) List. s1 = (s1@0 @ [inl(i)] @ s2) (inr(i) s2)) (i:T, s1,s2@0:(T+T) List. s2 = (s1 @ [inl(i)] @ s2@0) (inr(i) s2@0)) paren(T;s1) paren(T;s2) (i:T, s1@0,s2@0:(T+T) List. (s1 @ s2) = (s1@0 @ [inl(i)] @ s2@0) (inr(i) s2@0))

By:
Auto
THEN
FwdThru Thm* equal_appends [-1]
THEN
Analyze -1
THEN
Analyze -1


Generated subgoals:

12. s1: (T+T) List
3. s2: (T+T) List
4. i:T, s1@0,s2:(T+T) List. s1 = (s1@0 @ [inl(i)] @ s2) (inr(i) s2)
5. i:T, s1,s2@0:(T+T) List. s2 = (s1 @ [inl(i)] @ s2@0) (inr(i) s2@0)
6. paren(T;s1)
7. paren(T;s2)
8. i: T
9. s1@0: (T+T) List
10. s2@0: (T+T) List
11. (s1 @ s2) = (s1@0 @ [inl(i)] @ s2@0)
12. e: (T+T) List
13. s1 = (s1@0 @ e) & ([inl(i)] @ s2@0) = (e @ s2)
(inr(i) s2@0)
12 steps
 
22. s1: (T+T) List
3. s2: (T+T) List
4. i:T, s1@0,s2:(T+T) List. s1 = (s1@0 @ [inl(i)] @ s2) (inr(i) s2)
5. i:T, s1,s2@0:(T+T) List. s2 = (s1 @ [inl(i)] @ s2@0) (inr(i) s2@0)
6. paren(T;s1)
7. paren(T;s2)
8. i: T
9. s1@0: (T+T) List
10. s2@0: (T+T) List
11. (s1 @ s2) = (s1@0 @ [inl(i)] @ s2@0)
12. e: (T+T) List
13. s1@0 = (s1 @ e) & s2 = (e @ [inl(i)] @ s2@0)
(inr(i) s2@0)
1 step

About:
listconsnilunioninlinruniverse
equalimpliesandorall
exists

(47steps total) PrintForm Definitions Lemmas graph 1 2 Sections Graphs Doc