(47steps total) PrintForm Definitions Lemmas graph 1 2 Sections Graphs Doc

At: paren order1 3

1. T: Type
s:(T+T) List, t:T. (i:T, s1,s2:(T+T) List. s = (s1 @ [inl(i)] @ s2) (inr(i) s2)) paren(T;s) (i:T, s1,s2:(T+T) List. ([inl(t)] @ s @ [inr(t)]) = (s1 @ [inl(i)] @ s2) (inr(i) s2))

By:
Auto
THEN
EqualAppendsD -1


Generated subgoals:

12. s: (T+T) List
3. t: T
4. i:T, s1,s2:(T+T) List. s = (s1 @ [inl(i)] @ s2) (inr(i) s2)
5. paren(T;s)
6. i: T
7. s1: (T+T) List
8. s2: (T+T) List
9. ([inl(t)] @ s @ [inr(t)]) = (s1 @ [inl(i)] @ s2)
10. e: (T+T) List
11. [inl(t)] = (s1 @ e)
12. ([inl(i)] @ s2) = (e @ s @ [inr(t)])
(inr(i) s2)
12 steps
 
22. s: (T+T) List
3. t: T
4. i:T, s1,s2:(T+T) List. s = (s1 @ [inl(i)] @ s2) (inr(i) s2)
5. paren(T;s)
6. i: T
7. s1: (T+T) List
8. s2: (T+T) List
9. ([inl(t)] @ s @ [inr(t)]) = (s1 @ [inl(i)] @ s2)
10. e: (T+T) List
11. s1 = ([inl(t)] @ e)
12. (s @ [inr(t)]) = (e @ [inl(i)] @ s2)
(inr(i) s2)
18 steps

About:
listconsnilunioninlinruniverseequalimpliesall

(47steps total) PrintForm Definitions Lemmas graph 1 2 Sections Graphs Doc