Thm* For any graph
the_obj:GraphObject(the_graph), L:V List, s:Traversal, x:V. dfl-traversal(the_graph;L;s)  ( j:V. (inr(j) s)  (inl(j) s)  j-the_graph- > *x)  dfl-traversal(the_graph;L @ [x];dfs(the_obj;s;x)) | [dfs-dfl-traversal] |
Thm* For any graph
the_obj:GraphObject(the_graph), P:(Traversal Prop). P(nil)  ( s:Traversal, i:V. paren(V;s)  no_repeats(V+V;s)  P(s)  P(dfs(the_obj;s;i)))  paren(V;depthfirst(the_obj)) & no_repeats(V+V;depthfirst(the_obj)) & P(depthfirst(the_obj)) | [depthfirst_induction2] |
Thm* For any graph
the_obj:GraphObject(the_graph), P:(Traversal Prop). P(nil)  ( s:Traversal, i:V. P(s)  P(dfs(the_obj;s;i)))  P(depthfirst(the_obj)) | [depthfirst_induction] |
Thm* For any graph
the_obj:GraphObject(the_graph). L:V List. no_repeats(V;L) & ( y:V. (y L)) & depthfirst(the_obj) = dfsl(the_obj;L) | [depthfirst-dfsl] |
Thm* For any graph
the_obj:GraphObject(the_graph), P:((V List) Traversal Prop). P(nil,nil)  ( L:V List, s:Traversal, i:V. paren(V;s)  no_repeats(V+V;s)  P(L,s)  P(L @ [i],dfs(the_obj;s;i)))  ( L:V List. paren(V;dfsl(the_obj;L)) & no_repeats(V+V;dfsl(the_obj;L)) & P(L,dfsl(the_obj;L))) | [dfsl-induction2] |
Thm* For any graph
the_obj:GraphObject(the_graph), P:((V List) Traversal Prop). P(nil,nil)  ( L:V List, s:Traversal, i:V. P(L,s)  P(L @ [i],dfs(the_obj;s;i)))  ( L:V List. P(L,dfsl(the_obj;L))) | [dfsl-induction1] |
Thm* For any graph
the_obj:GraphObject(the_graph). depthfirst(the_obj) Traversal | [depthfirst_wf] |
Thm* For any graph
the_obj:GraphObject(the_graph), s:Traversal, i:V. df-traversal(the_graph;s)  ( j:V. (inr(j) s)  (inl(j) s)  j-the_graph- > *i)  df-traversal(the_graph;dfs(the_obj;s;i)) | [dfs-df-traversal] |
Thm* For any graph
the_obj:GraphObject(the_graph), P:(V Traversal Traversal Prop), s:Traversal, i:V. ( s:Traversal, i:V. (inl(i) s) (inr(i) s)  P(i,s,nil))  ( s1,s2,s3:Traversal, i,j:V. i-the_graph- > j  paren(V;s2)  ( k:V. (inr(k) s2)  j-the_graph- > *k)  paren(V;s3)  P(j,s1,s2)  P(i,s2 @ s1,s3)  P(i,s1,s3 @ s2))  ( s1,s2:Traversal, i:V. (inr(i) s1)  (inl(i) s1)  paren(V;s2)  l_disjoint(V+V;s2;s1)  no_repeats(V+V;s2)  ( j:V. (inr(j) s2)  i-the_graph- > *j)  ( j:V. i-the_graph- > j  j = i  (inl(j) s2) (inl(j) s1) (inr(j) s1))  P(i,[inr(i) / s1],s2)  P(i,s1,[inl(i) / (s2 @ [inr(i)])]))  ( s':Traversal. P(i,s,s') & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & ( j:V. (inr(j) s')  i-the_graph- > *j) & dfs(the_obj;s;i) = (s' @ s)) | [dfs_induction4] |
Thm* For any graph
the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. ((inr(i) s) (inl(i) s)  s' = nil) & ( (inr(i) s) & (inl(i) s)  ( s2:Traversal. s' = ([inl(i)] @ s2 @ [inr(i)]) Traversal)) & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & ( j:V. (inr(j) s')  i-the_graph- > *j) & dfs(the_obj;s;i) = (s' @ s) | [dfs-properties] |
Thm* For any graph
the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. ( j:V. (inr(j) s')  i-the_graph- > *j) & dfs(the_obj;s;i) = (s' @ s) | [dfs-connect] |
Thm* For any graph
the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. ((inr(i) s) (inl(i) s)  s' = nil) & ( (inr(i) s) & (inl(i) s)  ( s2:Traversal. s' = ([inl(i)] @ s2 @ [inr(i)]) Traversal)) & dfs(the_obj;s;i) = (s' @ s) | [dfs-cases] |
Thm* For any graph
the_obj:GraphObject(the_graph), P:(V Traversal Traversal Prop), s:Traversal, i:V. ( s1,s2:Traversal, i:V. P(i,s1,s2)  l_disjoint(V+V;s2;s1) & no_repeats(V+V;s2))  ( s:Traversal, i:V. member-paren(x,y.the_obj.eq(x,y);i;s)  P(i,s,nil))  ( s1,s2,s3:Traversal, i,j:V. i-the_graph- > j  P(j,s1,s2)  P(i,s2 @ s1,s3)  P(i,s1,s3 @ s2))  ( s1,s2:Traversal, i:V. member-paren(x,y.the_obj.eq(x,y);i;s1)  ( j:V. i-the_graph- > j  j = i  (inl(j) s2) member-paren(x,y.the_obj.eq(x,y);j;s1))  P(i,[inr(i) / s1],s2)  P(i,s1,[inl(i) / (s2 @ [inr(i)])]))  ( s':Traversal. P(i,s,s') & dfs(the_obj;s;i) = (s' @ s)) | [dfs_induction3] |
Thm* For any graph
the_obj:GraphObject(the_graph), l:V List, s:Traversal. s':Traversal. ( i:V. (i l)  (inl(i) s') (inl(i) s) (inr(i) s)) & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & list_accum(s',j.dfs(the_obj;s';j);s;l) = (s' @ s) | [dfs_accum_member] |
Thm* For any graph
the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. (inl(i) s') (inl(i) s) (inr(i) s) & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & dfs(the_obj;s;i) = (s' @ s) | [dfs_member] |
Thm* For any graph
the_obj:GraphObject(the_graph), P:(V Traversal Traversal Prop), s:Traversal, i:V. ( s:Traversal, i:V. (inl(i) s) (inr(i) s)  P(i,s,nil))  ( s1,s2,s3:Traversal, i,j:V. i-the_graph- > j  paren(V;s2)  paren(V;s3)  P(j,s1,s2)  P(i,s2 @ s1,s3)  P(i,s1,s3 @ s2))  ( s1,s2:Traversal, i:V. (inl(i) s1)  (inr(i) s1)  P(i,[inr(i) / s1],s2)  P(i,s1,[inl(i) / (s2 @ [inr(i)])]))  ( s':Traversal. P(i,s,s') & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & dfs(the_obj;s;i) = (s' @ s)) | [dfs_induction2] |
Thm* For any graph
the_obj:GraphObject(the_graph), P:(V Traversal Traversal Prop), s:Traversal, i:V. ( s1,s2:Traversal, i:V. P(i,s1,s2)  l_disjoint(V+V;s2;s1) & no_repeats(V+V;s2))  ( s:Traversal, i:V. member-paren(x,y.the_obj.eq(x,y);i;s)  P(i,s,nil))  ( s1,s2,s3:Traversal, i,j:V. i-the_graph- > j  P(j,s1,s2)  P(i,s2 @ s1,s3)  P(i,s1,s3 @ s2))  ( s1,s2:Traversal, i:V. member-paren(x,y.the_obj.eq(x,y);i;s1)  P(i,[inr(i) / s1],s2)  P(i,s1,[inl(i) / (s2 @ [inr(i)])]))  ( s':Traversal. P(i,s,s') & dfs(the_obj;s;i) = (s' @ s)) | [dfs_induction] |
Thm* For any graph
the_obj:GraphObject(the_graph), s:Traversal, i:V. dfs(the_obj;s;i) Traversal | [dfs_wf] |
Thm* For any graph
the_obj:GraphObject(the_graph). M:(Traversal  ). ( i:V, s:Traversal. M([inl(i) / s]) M(s)) & ( i:V, s:Traversal. member-paren(x,y.the_obj.eq(x,y);i;s)  M([inr(i) / s]) < M(s)) | [dfs-measure] |