At:
dfsl-induction2
For any graph
the_obj:GraphObject(the_graph), P:((V List)
Traversal
Prop). P(nil,nil) 
(
L:V List, s:Traversal, i:V. paren(V;s) 
no_repeats(V+V;s) 
P(L,s) 
P(L @ [i],dfs(the_obj;s;i))) 
(
L:V List. paren(V;dfsl(the_obj;L)) & no_repeats(V+V;dfsl(the_obj;L)) & P(L,dfsl(the_obj;L)))
By:
RepeatFor 5 (Analyze 0)
THEN
Inst
Thm* dfsl-induction1
[the_graph;the_obj;
l,s. paren(Vertices(the_graph);s) & no_repeats(Vertices(the_graph)+Vertices(the_graph);s) & P(l,s)]
THEN
All Reduce
THEN
EasyHyp
THEN
Try
((Inst
Thm* dfs_member
[the_graph;the_obj;s;i])
THEN
ExRepD
THEN
(HypSubst -1 0))
THEN
Try
(BackThru
Thm*
s',s3:(T+T) List. paren(T;s') 
paren(T;s3) 
paren(T;s3 @ s'))
THEN
Try
(RWO
Thm*
l1,l2:T List. no_repeats(T;l1 @ l2) 
l_disjoint(T;l1;l2) & no_repeats(T;l1) & no_repeats(T;l2)
0)
THEN
Try ObviousConcl
Generated subgoals:
None
About: