Rank | Theorem | Name |
13 | Thm* For any graph
the_obj:GraphObject(the_graph), P:((V List) Traversal Prop). P(nil,nil)  ( L:V List, s:Traversal, i:V. paren(V;s)  no_repeats(V+V;s)  P(L,s)  P(L @ [i],dfs(the_obj;s;i)))  ( L:V List. paren(V;dfsl(the_obj;L)) & no_repeats(V+V;dfsl(the_obj;L)) & P(L,dfsl(the_obj;L))) | [dfsl-induction2] |
cites |
2 | Thm* l1,l2:T List. no_repeats(T;l1 @ l2)  l_disjoint(T;l1;l2) & no_repeats(T;l1) & no_repeats(T;l2) | [no_repeats_append_iff] |
1 | Thm* s',s3:(T+T) List. paren(T;s')  paren(T;s3)  paren(T;s3 @ s') | [append_paren] |
12 | Thm* For any graph
the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. (inl(i) s') (inl(i) s) (inr(i) s) & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & dfs(the_obj;s;i) = (s' @ s) | [dfs_member] |
1 | Thm* For any graph
the_obj:GraphObject(the_graph), P:((V List) Traversal Prop). P(nil,nil)  ( L:V List, s:Traversal, i:V. P(L,s)  P(L @ [i],dfs(the_obj;s;i)))  ( L:V List. P(L,dfsl(the_obj;L))) | [dfsl-induction1] |