| Some definitions of interest. |
|
graphobj | Def GraphObject(the_graph) == eq:Vertices(the_graph) Vertices(the_graph)   ( x,y:Vertices(the_graph). (eq(x,y))  x = y) (eacc:( T:Type. (T Vertices(the_graph) T) T Vertices(the_graph) T) ( T:Type, s:T, x:Vertices(the_graph), f:(T Vertices(the_graph) T). L:Vertices(the_graph) List. ( y:Vertices(the_graph). x-the_graph- > y  (y L)) & eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L)) (vacc:( T:Type. (T Vertices(the_graph) T) T T) ( T:Type, s:T, f:(T Vertices(the_graph) T). L:Vertices(the_graph) List. no_repeats(Vertices(the_graph);L) & ( y:Vertices(the_graph). (y L)) & vacc(f,s) = list_accum(s',x'.f(s',x');s;L)) Top)) |
| | Thm* the_graph:Graph. GraphObject(the_graph) Type{i'} |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
gr_v | Def Vertices(t) == 1of(t) |
| | Thm* t:Graph. Vertices(t) Type |
|
graph | Def Graph == v:Type e:Type (e v v) Top |
| | Thm* Graph Type{i'} |
|
gro_eacc | Def t.eacc == 1of(2of(2of(t))) |
| | Thm* For any graph
t:GraphObject(the_graph), T:Type. t.eacc (T V T) T V T |
|
gro_eaccw | Def t.eaccw == 1of(2of(2of(2of(t)))) |
| | Thm* For any graph
t:GraphObject(the_graph). t.eaccw ( T:Type, s:T, x:V, f:(T V T). L:V List. ( y:V. x-the_graph- > y  (y L)) & t.eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L)) |
|
gro_eq | Def t.eq == 1of(t) |
| | Thm* For any graph
t:GraphObject(the_graph). t.eq V V   |
|
gro_eqw | Def t.eqw == 1of(2of(t)) |
| | Thm* For any graph
t:GraphObject(the_graph). t.eqw ( x,y:V. t.eq(x,y)  x = y) |
|
gro_other | Def t.other == 2of(2of(2of(2of(2of(2of(t)))))) |
| | Thm* For any graph
t:GraphObject(the_graph). t.other Top |
|
gro_vacc | Def t.vacc == 1of(2of(2of(2of(2of(t))))) |
| | Thm* For any graph
t:GraphObject(the_graph), T:Type. t.vacc (T V T) T T |
|
gro_vaccw | Def t.vaccw == 1of(2of(2of(2of(2of(2of(t)))))) |
| | Thm* For any graph
t:GraphObject(the_graph). t.vaccw ( T:Type, s:T, f:(T V T). L:V List. no_repeats(V;L) & ( y:V. (y L)) & t.vacc(f,s) = list_accum(s',x'.f(s',x');s;L)) |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |