Definitions graph 1 3 Sections Graphs Doc

Some definitions of interest.
graphrep Def Graph Representation == type:Typegraph:typeGraphr:typeGraphObject(graph(r))
Thm* Graph Representation Type{i'}
graphobj Def GraphObject(the_graph) == eq:Vertices(the_graph)Vertices(the_graph)(x,y:Vertices(the_graph). (eq(x,y)) x = y)(eacc:(T:Type. (TVertices(the_graph)T)TVertices(the_graph)T)(T:Type, s:T, x:Vertices(the_graph), f:(TVertices(the_graph)T). L:Vertices(the_graph) List. (y:Vertices(the_graph). x-the_graph- > y (y L)) & eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L))(vacc:(T:Type. (TVertices(the_graph)T)TT)(T:Type, s:T, f:(TVertices(the_graph)T). L:Vertices(the_graph) List. no_repeats(Vertices(the_graph);L) & (y:Vertices(the_graph). (y L)) & vacc(f,s) = list_accum(s',x'.f(s',x');s;L))Top))
Thm* the_graph:Graph. GraphObject(the_graph) Type{i'}
grr_graph Def t.graph == 1of(2of(t))
Thm* t:Graph Representation. t.graph t.typeGraph
grr_obj Def t.obj == 2of(2of(t))
Thm* t:Graph Representation. t.obj r:t.typeGraphObject(t.graph(r))
grr_type Def t.type == 1of(t)
Thm* t:Graph Representation. t.type Type

About:
productproductlistboolisectapplyfunctionuniverse
equalmembertopandallexists!abstraction

Definitions graph 1 3 Sections Graphs Doc