| Some definitions of interest. |
|
depthfirst | Def depthfirst(the_obj) == the_obj.vacc(( s,i. dfs(the_obj;s;i)),nil) |
| | Thm* For any graph
the_obj:GraphObject(the_graph). depthfirst(the_obj) Traversal |
|
dfsl | Def dfsl(G;L) == list_accum(s,i.dfs(G;s;i);nil;L) |
| | Thm* For any graph
the_obj:GraphObject(the_graph), L:V List. dfsl(the_obj;L) Traversal |
|
graphobj | Def GraphObject(the_graph) == eq:Vertices(the_graph) Vertices(the_graph)   ( x,y:Vertices(the_graph). (eq(x,y))  x = y) (eacc:( T:Type. (T Vertices(the_graph) T) T Vertices(the_graph) T) ( T:Type, s:T, x:Vertices(the_graph), f:(T Vertices(the_graph) T). L:Vertices(the_graph) List. ( y:Vertices(the_graph). x-the_graph- > y  (y L)) & eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L)) (vacc:( T:Type. (T Vertices(the_graph) T) T T) ( T:Type, s:T, f:(T Vertices(the_graph) T). L:Vertices(the_graph) List. no_repeats(Vertices(the_graph);L) & ( y:Vertices(the_graph). (y L)) & vacc(f,s) = list_accum(s',x'.f(s',x');s;L)) Top)) |
| | Thm* the_graph:Graph. GraphObject(the_graph) Type{i'} |
|
traversal | Def traversal(G) == (Vertices(G)+Vertices(G)) List |
| | Thm* For any graph
Traversal Type |
|
gr_v | Def Vertices(t) == 1of(t) |
| | Thm* t:Graph. Vertices(t) Type |
|
graph | Def Graph == v:Type e:Type (e v v) Top |
| | Thm* Graph Type{i'} |
|
l_all | Def ( x L.P(x)) == x:T. (x L)  P(x) |
| | Thm* T:Type, L:T List, P:(T Prop). ( x L.P(x)) Prop |
|
l_member | Def (x l) == i: . i < ||l|| & x = l[i] T |
| | Thm* T:Type, x:T, l:T List. (x l) Prop |
|
no_repeats | Def no_repeats(T;l) == i,j: . i < ||l||  j < ||l||  i = j  l[i] = l[j] T |
| | Thm* T:Type, l:T List. no_repeats(T;l) Prop |