Definitions graph 1 3 Sections Graphs Doc

Some definitions of interest.
graphobj Def GraphObject(the_graph) == eq:Vertices(the_graph)Vertices(the_graph)(x,y:Vertices(the_graph). (eq(x,y)) x = y)(eacc:(T:Type. (TVertices(the_graph)T)TVertices(the_graph)T)(T:Type, s:T, x:Vertices(the_graph), f:(TVertices(the_graph)T). L:Vertices(the_graph) List. (y:Vertices(the_graph). x-the_graph- > y (y L)) & eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L))(vacc:(T:Type. (TVertices(the_graph)T)TT)(T:Type, s:T, f:(TVertices(the_graph)T). L:Vertices(the_graph) List. no_repeats(Vertices(the_graph);L) & (y:Vertices(the_graph). (y L)) & vacc(f,s) = list_accum(s',x'.f(s',x');s;L))Top))
Thm* the_graph:Graph. GraphObject(the_graph) Type{i'}
non-trivial-loop-free Def non-trivial-loop-free(G) == i:Vertices(G). non-trivial-loop(G;i)
topsorted Def topsorted(the_graph;s) == i,j:Vertices(the_graph). i-the_graph- > *j i = j i before j s
Thm* For any graph s:V List. topsorted(the_graph;s) Prop
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop
no_repeats Def no_repeats(T;l) == i,j:. i < ||l|| j < ||l|| i = j l[i] = l[j] T
Thm* T:Type, l:T List. no_repeats(T;l) Prop
topsort Def topsort(G) == mapoutl(depthfirst(G))
Thm* For any graph the_obj:GraphObject(the_graph). topsort(the_obj) V List

About:
productproductlistboolless_thanisectapplyfunctionuniverseequal
membertoppropimpliesandallexists!abstraction

Definitions graph 1 3 Sections Graphs Doc