Definitions graph 1 3 Sections Graphs Doc

Some definitions of interest.
adjl_out Def t.out == 2of(t)
Thm* t:AdjList. t.out t.size(t.size List)
adjl_size Def t.size == 1of(t)
Thm* t:AdjList. t.size
adjlist Def AdjList == size:size(size List)
Thm* AdjList Type
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A

About:
spreadspreadproductlistnillist_ind
intnatural_numberaddless_thansetfunctionrecursive_def_notice
universeequalmemberpropimpliesallexists!abstraction

Definitions graph 1 3 Sections Graphs Doc